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Antosik—Mikusinski Matrix Convergence Theorem
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In this paper we establish the order topology type Antosik—Mikusinski infinite matrix
convergence theorem in quantum logics. As application, we prove the Hahn—Schur
summation theorem in quantum logics, too.
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1. EFFECT ALGEBRA AND ITS ELEMENTARY PROPERTIES

Itis well known that the study of measure convergence theory on quantum log-
ics is important for establishing the mathematical foundation of quantum mechan-
ics. Many measure convergence theorems for measures defined on quantum logics
and taking values in Abelian topological groups have been obtained (d’Andrea
and deL.ucia, 1991; Habil, 1995; Mazario, 2001). Nevertheless, we are much more
interested in those measure convergence theorems for measures which are defined
on quantum logics and take values also in quantum logics. In this paper we present
an elementary tool for studying such problems, that is, we prove an order topology
type Antosik—Mikusinski infinite matrix convergence theorem on quantum logics.
The classical Antosik—Mikusinski infinite matrix convergence theorem has very
extensive applications in studying various topics in functional analysis and mea-
sure theory (Antosik and Swartz, 1985; Swartz, 1996). As application of the new
Antosik—Mikusinski theorem we prove the Hahn—Schur summation theorem on
guantum logics, too.

To model unsharp quantum logics, Foulis and Bennett (1994) introduced the
following famous effect algebras:
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LetL be a setwith two special elements 0, 1he asubsetdf x L, if(a, b) €
1, we denotea L b, and let®: 1L — L be a binary operation. We say that the
algebraic system(, L, @, 0, 1) is areffect algebraf the following axioms hold:

() (Commutative law) Ifa, be L anda L b,thenb Laanda® b=b & a.
(i) (Associativelaw)lIfa,b,ce L,a L band@@b) L c,thenb L c,a L
(bpc)and@db)ydc=ad (b c).
(iii) (Orthocomplementation law) For eaehe L there exists a uniguee L
suchthat L banda @ b=1.
(iv) (Zero-unitlaw)Ifae L and 11 a,thena=0.

Let (L, L, @, 0, 1) be an effect algebra.df b € L anda L b we say thata
andb be orthogonal. I & b=1 we say thab is the orthocomplement &, and
writeb=a'. ltisclearthat 1=0, @) =a,a L Oanda® O=aforallac L.

We also say tha < bif there existx € L suchthat | canda @ c=b. We
may prove thak is a partial order oh and satisfiesthat@a<1l,a<bs b <a
anda<b' & albfora,be L. If a<b,the element € L such that L aand
a ® c=bis unique, and satisfies the conditioa: (a & b’)'. It will be denoted by
c=boa.lfa<bbuta # b, we writea < b.

The above showed that each effect algelira l(, ¢, 0, 1) has two binary
operationsp ande.

If the partial order< of effect algebral(, L, &, 0, 1) defined as above is a
lattice, then the effect algebra (L, &, 0, 1) is said to be kttice effect algebra
ifforalla,be L,a<borb<a,then(, L, &, 0, 1) is said to be totally order
effect algebraif for all a,b € L, a < b, there existe € L such thata < c < b,
then (L, L, @, 0, 1) is said to be connected.

Let F={g :1<i <n} be a finite subset of.. If &y | ay, (aa @ ap) L
az,...and @ @ ay...da,_1) L a,, we say thatF is orthogonaland we de-
finedF=a1day.. Pan=(1P--- P a,_1) D &, (by the commutative and
associative laws, this sum does not depend of any permutation of elements). Now,
if Ais an arbitrary subset df andF(A) is the family of all finite subsets o4, we
say thatA is orthogonal ifF is orthogonal for eaclk € F(A). If Ais orthogonal
and the supremuny {®F : F € F(A)} exists, therdA = \/{®F : F € F(A)}
is called thep-sum of A.

An effect algebra is complete, if for each orthogonal subgetsf L, the
®-suma A exists; if for each countable orthogonal subBetf L, the®-sumaB
exists, then we say that the effect algebra-isomplete

2. ORDER TOPOLOGY OF EFFECT ALGEBRAS

A partial order set4, <) is said to be @irected setif for all «, 8 € A, there
existsy € A suchthar <y, 8 <y.
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If (A, =) is a directed set and for eache A, a, € (L, L, ®, 0, 1), then
{ag}aen IS Saidto be anetoly(, L, @, 0, 1).

Let {a,}uca be a net of , L, @, 0, 1). Then we writea, 1, whena < 3,
a, < ag. Moreover, ifaisthe supremumdg, : « € A},i.e.,a= v{a, : a € A},
then we writeg,, 1 a.

Similarly, we may writea, | anda, | a.

If {Uyleen, {Valaen are two nets of I, 1L, ®,0,1), forutu, <v, L Vv
means thati, <V, forall« € A andu, 1 uandv, | v. We writeb < u, 1 uif
b<u,foralla € A andu, 1 u.

We say a neta, }oca Of (L, L, &, 0, 1) isorder convergento a pointa of L
if there exists two netfu, },ca and{v,}qea Of (L, L, @, 0, 1) such that

atuy, <a, <Vgla

Let F={F:F=¢or F CL and for each neta,},ca of F such that if
{ay}aen is order convergent ta, thena € F}.

ltiseasytoprovethat, L € FandifFy, Fp, ..., Fy e F,thenJ_; F € F,
if {Fuluee € F, then(, o Fy € F. Thus, the familyF of subsets oL define
a topologyrc',- on (L, L, ®, 0, 1) such thatF consists of all closed sets of this
topology. The topology,; is called theorder topologyof (L, L, &, 0, 1) (Birkhoff,
1948).

We can prove that the order topology of (L, L, ®,0,1) is the finest
(strongest) topology o such that for each nde,},ca Of (L, L, @, 0, 1), if
{ay}aen IS Order convergent ta, then{a, },c» Mmust be topologyé— convergent to
a. But the converse is not true.

When (L, L, &, 0, 1) is a lattice effect algebra, Riecanova (1999) proved the
continuity of @ ande with respect to the order topology as follows:

Theorem A. If (L, L, ®, 0, 1)is a lattice effect algebra, then a nf, },ca Of
(L, L,e,0,1)has

(1) Ifa, < b’ forall @ € A and{a,}sca COnvergent to a with respect to the
order topologyz,, then{a, @ b} convergent to @ b with respect to the
order topologyz; .

(2) Ifb < a, foralla € A and{a,} convergent to a with respect to the order
topologyz¢, then{a, © b} convergent to @ b with respect to the order
topologyzg .

(3) Ifa, < bforalle € A and{a,} convergent to a with respect to the order
topologyr(')-, then{b © a,} convergent to ® a with respect to the order
topologyz.

From Theorem A we can prove the following important conclusion:
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Theorem 1. Let(L, L, &, 0, 1)be atotally order effect algebra. If A {ak}ken
is orthogonakp-summable, thefan }nen is order topologyr; convergent td.

In fact, since [, L, @, 0, 1) is a totally order effect algebrd0, h) : h € L}
is a neighbourhood basis of 0 of the order topolafyLeta = @A = \/{®F_ & :
n € N}, for eachh € L, 0< h and note tha{®;_,ac} 1 a. Then it follows from
Theorem A that there existg € N, such that fong < n,

0<ao (ep_;a) <h.
So forng + 1 < nwe have
an=(ao (Bt a)) © (@ao (Bh_y &) < ae (dp_t &) < h.

This shows thatan}nen is order topology; convergent to 0. This completes the
proof.
The following lemmas and definition will be used in this paper.

Lemmal. If (L, L, ®,0,1)is aoc-complete effect algebrda } and {b;} two
orthogonal®-summable sequences of L and for eaelN, by < a. Then we have

Vien{ @[y (@ © b)) = Vien{ @, &} © Vien|{ @[, bi}.

Proof: Leta © b = ¢. Then{c} is an orthogonal sequenceslof by theo -
completeness df, Vaen{®[_ ;G } exists. Note thalt; @ ¢; =a;, so we have

VneN{eain:]_ g } = VneN{@in:]_ bi } @ VneN{ @inzl Gi }
Thus, we have
\/neN{@in:]_ (ai © bl)} = vneN{Gain=;|_ g } © VneN{®i”=1 by }

The lemma is proved. O

Lemma2. If(L, L, ®, 0, 1)isaoc-complete totally order connect effect algebra,
then foreach te L, 0 < h, there exists an orthogonal-summable sequenéle, }
of L such thatvpen{®_;hi} < h.

Infact, since [, L, &, 0, 1) is a totally order connect effect algebra, so there
existshy, hg € L, such that & hy < hg < h. For hg © hy, there existd, € L
such that < h, < hg & hy. Similar, there existdi3 € L such thaths < (hp ©
h1) © h,. Inductively, we can obtain an orthogonal sequefigé of L such that
for eachn € N, @_,h; < ho. It following from the o-completeness of that
Vinen{®]hi} exists andvien{®{_;hi} < hg < h. This lemma is proved.
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Definition 1. Let(L, L, &, 0, 1) be atotally order effect algebra. We say that the
sequencéa, }nen Of L is arOL—Cauchy sequencd for eachh € L, 0< h, there
existsng € N such that whemg < n, ng < m, if a5 < an, thena, © a, < h; if

am < &y, thena, © an < h.

3. MAIN THEOREM AND ITS PROOF

We now prove the order topology type Antosik—Mikusinski infinite matrix
convergent theorem on tlecomplete totally order connect effect algebras.

Theorem 2. Let (L, L, ®, 0, 1) be ao-complete totally order connect effect
algebra, g < L fori, j € N. Suppose

() {&;}is order topologycoL convergent to afor each je N;

() For each i e N, {aj}jen is an orthogonal sequence of L, and for each
strictly increasing sequence of positive integérs }, there is a subse-
quence(n;} of {m;} such that the sequen¢e®;ain, }Jien is @ 5 -Cauchy
sequence.

Then{a;; } is rg- convergent to auniformly for j € N. In particular,
the diagonala;; } is tOL convergent td.

Proof: Ifthe conclusion fails, there existe L, 0 < h andtwo strictlyincreasing
sequences of positive integgrk} and{qgx} suchthatforalk € N, h < a;, © ap,q,
whenap,q < ag;h < apq © ag Whenag, < apq. Without loss generality, we
may assume that for atl e N, ag, < apq,, i.€.,

h <apq ©ag.keN (1)

By Lemma 2, we can choos$g, h, € L, 0< hy, 0< hysuchthah; @ h, <
h. Note that for each € N, {apq,} ist§ convergenttay, . Therefore, there exists a
subsequenden; } of { p; } suchthatforeache N, ifa; < amq,thenamq © ag <
hy; if amg < aq, thenag © amq < hy.

Note that wherag < am,q, it follows from (1) thataynq © ag < hy < h
Apg © 8y, S08mg < apq;Whenam g < ag, it follows from (1) also thaéy,
ag < apg. Thus, foralli € N, amq < apgq-

On the other hand, #dy < amq, then

=
=

aPiCIi S] aQi = (aPiQi S amiCIi) ® (amiOIi © a’ql) (2)
If amq < ag, then

aPiQi © aQi = apw i © a’miQi (3)
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Thus, if we can prove that for sufficient largea, 4 © amq < h2, thenit fol-
lows from (2) and (3) that for sufficiently lardeayq © a5 < h. This contradicts
(1), which proves this theorem.

Now, let us consider the infinite matrixi()i jen, Wherexij = ap g, © amyq,
if amg; < Apq;; Xij = Amg; © Apg;» If Apg; < @mg,- It follows easily from the

condition (I) and Theorem 1 that the matri; (i jen has the following properties:

(i) {xijlien is order topologyrs convergentto O for eache N;
(i) {xij}jen is order topologyc('; convergent to O for eadhe N.

Now, we show that whehis sufficiently largex;; < h,.

If not, there exists an increasing sequence of positive intgggrsuch that
for eachi € N, hy < x.,r,. Without loss of generality, we may assume that for all
i €N,

h2 < Xj;. 4)

By Lemma 2, we can take an orthogogasummable sequeng¢g } of L such
thatvnen{®_,0i} < h2; and for eachy;, we can take an orthogonglsummable
sequencgg;j } of L such thah/neN{ea’j‘:lgij 1< 0.

Letl; =1. Then it follows from the properties of (i) and (ii) that we can find
an index such thats,;, < g;; fori, j =1, 2, and # j. By induction we can find
an increasing sequenkesuch that

X, < Gij, 1, ] €N, i #]. ©)

It follows from the condition (1) that we can obtain a subsequesgef {l;},
without loss generality, we may also assume that the subseq{ghtgjust{l;},
such that the sequen¢®; &, }ien IS aroL—Cauchy sequence. So the subsequence
{@jay; Jien Of {®jay; Jicn is also arOL-Cauchy sequence.

Lethg=h26 Vnen {®{_,10i}. Then there existi € N such that wherip <
i, io<iz, if @&, < ®ja,,, then @ja, ), ©(@ja,,)<ho; if Sja, <
®ja,,, thend;a,, e(eajar.lr,) < ho.

Without loss generality, we may assume tmarmioh. < @;j a1, SO

Dja, I, e(eajalmi 'j)fho' 6)

Let Ar={j:jeN,a, <a,} da={j:jeNa, <a, ]} Then
AlﬂAz_(oandAlqu_N Furthermore it follows from Lemmalthat

; O a1 ,))

'ZIJ

ViEA1(®j alpioli S a‘lmioli) o ( Viebs (a
=®ja, 1, © ®ja,, 1; < ho.

mig

Thus, it follows from the definitions dfg; } andhg thata i 7o [S) By I < ho.
This contradicts (4), which proves this theorem. O
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Now, we apply Theorem 2 to prove the Hahn-Schur Theorem on Effect
Algebras.

Theorem 3. Let (L, L, &, 0,1)be ac-complete totally order connect effect
algebra, for each E N, {&j};cn be an orthogonal sequence of L. If for each
subsetA of N, the®-sum sequendebjc,® }ien is order topologyc('; convergent,
then{a;; }jen are uniformly@-summable with respect tasiN.

Proof: If not, there existdn e L, 0< h, and a sequence of finite s¢tsc} of N
such that max\x < min Ay,; for all k e N, a strictly increasing positive integers
sequenceiy} such that

h < @jEAka-ikjv k e N. (7)
Using Theorem 2, we can easily prove that (7) is impossible. The theorem is
proved. O
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